某些数值积分的计算

某些数值积分的计算

一、某几类数值积分的计算(论文文献综述)

王玉品[1](2021)在《分数阶非线性动力系统分形分析与控制》文中研究表明随着科学技术的日新月异,人们对大自然的认识不断深入,分形和分数阶系统已然成为当下的理论热点和技术前沿,是诸多领域特别是在交叉学科中对各类非线性过程和反常现象进行建模、刻画、分析和控制的有力工具,吸引着国内外众多学者的持续关注.一方面,以Julia集为代表的分形集直观地表征着系统状态的某些渐近性质,对其的分析和估计可以帮助人们更好地理解和把握系统的复杂性,而系统的某些性态需求也可以通过控制其Julia集来得以实现.此外,Julia集和扩散限制凝聚模型等本身亦是重要的分形研究对象,具有错综复杂的内部结构和异乎寻常的有趣性质.另一方面,分数阶系统通常用于刻画具有记忆性、遗传性或者非局部性的现象和行为.此类现象或行为具有本质的非线性和高度的复杂性,一般无法通过经典整数阶模型给出简洁清晰的解释.而且,越来越多的研究已经证实,自然界中多数系统本质上即是“分数阶,,的,通过传统方法得到的整数阶模型只能反映某些局部性质或得到一些粗略结果.因此,结合分形理论和分数阶系统理论,从分形视角研究分数阶系统,将分数阶元素引入经典分形,可为非线性系统理论的研究提供新的分析工具和控制方法,也可为非线性问题的动力学建模与应用拓展新的途径,具有十分重要的理论意义与现实价值.本文立足理论、服务应用,融合分形理论和分数阶系统理论,构建几类分数阶分形对象,从定性和定量两个层面探讨分数阶系统的分形动态性质,解决分数阶分形集的控制或同步问题,为进一步理解分数阶动力学以及描述自然界中的某些非线性现象提供新的视角和可行的方法.研究内容主要包括以下四个具体方面:1.基于分数阶Lotka-Volterra模型的连续分数阶系统Julia集的分形动态分析和控制.推广现有的分数阶Lotka-Volterra模型,设计耦合雅可比矩阵以分析系统均衡点的稳定性,定义模型的Julia集并讨论其分形特征,通过三种不同的控制策略实现Julia集的控制并进行比较,设计耦合项以实现两个具有不同系统参数的Julia集的同步.进一步,将分数阶Lotka-Volterra模型推广至复数域并引入动态噪声扰动,以研究系统空间Julia集的结构和性质;定义Julia偏差指数定量地分析几类动态噪声对系统Julia集的影响,并讨论Julia集的对称性以及噪声对其的破坏作用.2.基于分数阶差分Logistic映射的离散分数阶系统分形集的动态分析和同步.研究基于离散分数阶微积分框架的差分方程所导出的Logistic映射.通过Julia集和Poincare图,讨论映射的分形和混沌特征,并与定义的分数阶差分二次映射进行比较,阐明这些动力学现象所反映出的分数阶差分映射的记忆效应;设计耦合控制器以实现分数阶差分Logistic映射和分数阶差分二次映射之间的同步.进一步,提出传统映射分形集的分数阶化准则,并给出经典二次映射的Julia集和Mandelbrot集分数阶化的若干具体方案,同时比较分析这些推广之间的差异.通过可视化技术和维数分析,研究映射阶数对其分形集的影响.3.基于Mittag-Leffler函数的分数阶函数迭代Julia集的分形动态分析和同步.研究基于Mittag-Leffler函数的一类由分数阶函数所构成的不确定离散复动力系统的Julia集.推广几类经典的非多项式函数迭代的Julia集,讨论函数参数对集合分形特征的影响.提出一种直接适用于复动力系统的自适应控制策略以同步具有不同系统参数的两个系统的Julia集,并对其中的未知参数进行辨识.4.基于分数阶扩散限制凝聚模型的分数阶偏微分系统的分形动态分析.利用分数阶扩散机制,改进经典扩散限制凝聚模型,构造得到一类分数阶扩散限制凝聚以作为模拟分形生长的新方法.分数阶算子独特的记忆性最终可以宏观地反映为凝聚团簇的定向性,定义各向异性指数并结合分形维数量化模型阶数对凝聚行为和团簇结构的影响.综上所述,本文创新性地研究了几类基于典型分数阶系统的分形集,分析了分数阶分形的性质和特点,讨论了系统阶数对系统分形的作用,实现了分数阶Julia集的控制、同步和未知参数的辨识,改进了相关的可视化算法,扩充了分形理论研究的知识框架,丰富了分数阶系统的研究方法,为分形理论和分数阶系统理论的进一步应用提供了一定的技术支持,对更一般分数阶系统的分形分析和分形控制问题的研究也具有借鉴意义.

王素敏[2](2021)在《复杂响应曲面的抽样与设计》文中提出很多科学试验需要探查未知的复杂系统.一般情况下,人们感兴趣的是复杂系统中响应与变量之间的关系,这种关系被称为响应曲面.响应曲面的研究目标包括鉴别重要的变量、响应曲面的预测、系统的优化等.这些研究目标均涉及到响应曲面的抽样和设计.近年来,响应曲面的抽样和设计方法一般采用空间填充设计,其本质是同等地看待变量空间的每一个区域,让设计点分布的尽可能均匀.但是在寻找最优响应值中,空间填充设计难免会抓不住响应曲面的趋势特征,因而造成设计点的浪费.本文提出探查复杂响应曲面的一种新的抽样方法,该方法不仅可用于系统优化,而且还可用于贝叶斯计算和高维数值积分.此外,本文还讨论了一类包含复合型变量的响应曲面设计的大样本性质.具体研究工作如下:1.基于Kullback-Leibler偏差和函数的核估计方法,提出了一类新的确定性抽样方法称为Kullback-Leibler点.但是当知道一些先验信息后,例如已知响应曲面包含多个局部最大值,并且研究目的是寻找响应曲面的最大值时,由于空间填充设计分布的比较均匀,所以难免会有设计点会落入低响应值的区域,进而造成设计点的浪费.因此,本文将复杂响应曲面转化为非标准化的密度函数,进而通过最小化一组点的核密度估计与该密度函数的Kullback-Leibler偏差,提出一类新的获取复杂响应曲面代表点的抽样方法,得到的点集称为Kullback-Leibler(KL)点.KL点能够抓住响应曲面的趋势特征并且不同点之间保持一定的距离.本文通过两步近似来生成n个KL点.首先,为了避免高维积分,通过最小化Kullback-Leibler偏差的Monte Carlo近似来生成KL点.其次,由于同时生成n个KL点比较困难,为此采用一次生成一个点的策略.数值模拟表明KL点与最小化能量设计(Joseph et al.,Technometrics,2019,[1])和支撑点(Mak and Joseph,Ann Stat,2018,[2])相比,在空间填充性质与数值积分上更具优势(见图2.2-2.4,表2.1-2.2).2.针对响应曲面没有显式表达或者计算耗时的情形,基于Kullback-Leibler偏差和函数的核估计方法,提出了自适应的Kullback-Leibler(AKL)点.若响应曲面具有复杂的结构,例如没有显式表达或者计算耗时.本文首先基于初始的空间填充设计拟合一个平稳的高斯过程模型来代替该密度函数,进而通过最小化一组点的核密度估计与该高斯过程模型的Kullback-Leibler偏差来生成一类推广的KL点.本文采用自适应的策略,每生成一个KL点,均更新一次该高斯过程模型,进而产生下一个KL点,得到的KL点称为自适应的KL(AKL)点.AKL点可用于复杂密度函数的抽样,例如复杂的贝叶斯后验密度函数,以及探索和优化复杂的黑盒子函数(见图3.1-图3.3).3.针对响应曲面维数较高的情形,基于Kullback-Leibler偏差和函数的最小邻近距离估计方法,提出了Kullback-Leibler-nn(KL-nn)点.当复杂响应曲面的维数较高时,依然可将其转化为非标准化的密度函数.本文通过最小化一组点密度的最小邻近距离估计与该密度函数的Kullback-Leibler偏差提出第二类推广的KL点,称为Kullback-Leibler-nn(KL-nn)点.本文通过基于Markov Chain Monte Carlo(MCMC)的局部搜索算法来生成KL-nn点.数值模拟表明,KL-nn点有较好的空间填充性质(见图3.6),且在高维情形下的数值积分上比支撑点和最小化能量设计有较小的积分误差(见图3.7).4.导出了当复杂响应曲面同时包含定性和定量因子时的边际耦合设计的大样本性质.当复杂响应曲面同时包含定性和定量因子时,传统的抽样设计方法不可用.为处理该问题,Qian(JASA,2012,[3])提出了一种新的设计方法,称为切片拉丁超立方体设计.该设计中定性因子的每个水平组合,对应的定量因子的设计点都分布的很均匀,这样可以减少因子间的混杂.He and Qian(Stat Sin,2016,[4])研究了切片拉丁超立方体设计的大样本性质,从理论上说明了空间填充性的合理性.当定性因子的个数和水平数增加时,切片拉丁超立方体设计的试验次数呈指数增长,因此实际的试验成本难以承受.为此,Deng et al.(Stat Sin,2015,[5])提出了边际耦合设计方法,该设计可以大大降低试验次数.由于边际耦合设计的结构与切片拉丁超立方体设计的结构不同,所以He and Qian(Stat Sin,2016,[4])获得的大样本性质不能直接应用到边际耦合设计中.鉴于此,本文研究了边际耦合设计的大样本性质,并进一步导出了边际耦合设计的中心极限定理.

蹇焕燕[3](2021)在《几类分数阶微分方程的快速数值算法研究》文中提出分数阶方程作为整数阶方程的推广,近年来被广泛用于建模各种物理和科学现象。由于分数阶算子的非局部性,分数阶模型能更精确地描述具有遗传和记忆性质的材料和过程。大多数分数阶方程的解析解都不易确定,所以一般研究其数值方法。此外,分数阶算子的离散通常导出稠密矩阵,这也造成了极大计算困难。因此,发展其高性能算法也是十分迫切的。本文工作主要分为以下四个方面:1.针对时间分布阶和变系数空间分数阶扩散方程,提出了一个快速隐式差分格式。首先通过数值积分,将该方程转换为一个多项时空分数阶方程。然后提出一个隐式差分格式来求解这个多项时空分数阶方程,并讨论它的无条件稳定性和收敛性。另外,发展了预处理的Krylov子空间算法来计算导出的Toeplitz-like线性系统。最后数值实验结果支持了理论发现,并验证了算法的有效性。2.针对时间分布阶和Riesz空间分数阶扩散波方程,建立了一个快速二阶差分格式。利用加权位移Gr¨unwald公式离散时间导数和分数阶中心差分公式离散空间导数,从而导出差分格式。另证明了该格式在时间、空间和分布阶上的稳定收敛性。一维时,提出基于Gohberg-Semencul公式的预处理Krylov子空间算法来计算Toeplitz系统。二维时,构建带截断预处理子的全局预处理共轭梯度法来求解Sylvester系统。数值实验结果验证了提出差分格式和快速算法的有效性。3.针对非线性Riesz空间分数阶反应-扩散方程,发展了一个快速隐式积分因子方法。首先利用分数阶中心差分公式空间离散该方程,得到一个非线性常微分方程系统。其次,为获得良好的稳定性和鲁棒性,采用隐式积分因子方法求解该系统。另外,为了降低计算量,考虑到系数矩阵是对称正定Toeplitz的,提出了基于Gohberg-Semencul公式的位移-逆Lanczos方法来计算指数矩阵-向量乘积。最后用数值实验证实了理论结果的正确性,并验证了快速求解算法的有效性。4.针对二维的非线性Riesz空间分数阶反应-扩散方程,提出了一个非均匀网格的快速紧隐式积分因子方法。利用加权位移Gr¨unwald-Letnikov方法对该方程空间离散后,得到一个矩阵形式的非线性常微分方程系统。鉴于紧隐式积分因子方法的稳定性,将其与非均匀时间网格和对角化技术结合,构建了一种非均匀时间网格的快速紧隐式积分因子方法。与已有方法相比,该方法避免了直接计算稠密指数矩阵并显着降低了计算成本。数值实验也验证了提出方法的有效性。

田歌[4](2021)在《几类非局部时滞种群扩散模型的空间动力学》文中研究说明反应扩散方程常常被用于解释和预测一些具体学科中遇到的问题,例如数学生态学中新物种的入侵,传染病的传播;化学反应中的酶促反应,低温等离子体烟气脱硫反应;物理学中的热传导现象,流体的运动规律等等.由于生物个体和环境因子是相互依存的,空间扩散和时间滞后的协同作用在数学生态学科的研究中不容忽视.基于这种相互作用,研究者在非线性项中引入了空间和时间滞后的加权平均,得到了非局部时滞反应扩散方程.相比于传统模型,非局部时滞反应扩散方程会带来更多的研究困难,但同时也揭示了更为丰富的动力学行为,因此得到了学者们的广泛关注和研究,并取得了一些研究成果.本文主要研究非局部时滞种群扩散模型的行波解和渐近传播速度问题,具体的研究内容如下:第二章考虑一类非局部Fisher-KPP方程的行波解(单调或者非单调)的稳定性.此时非线性项导致比较原理的缺失,本章使用反加权的思想,通过能量估计方法和一些精细技巧处理扰动方程的解,最终建立了该模型的行波解在大波速情形下的全局稳定性.第三章研究一类非单调无穷维时滞格微分方程行波解的全局稳定性.通过加权能量和Fourier变换的方法建立扰动方程的解的有界性估计,进一步得到:在一个加权的Sobolev空间中,非临界行波解((8>(8*)是全局稳定的,并以指数收敛速率-1/0)-(>0且0<≤2)收敛;临界行波解((8=(8*)是全局稳定的,并以代数收敛速率-1/收敛.第四章研究一类非局部时滞单种群模型的渐近传播速度.运用Banach不动点定理和延拓方法最先得到这类方程初值问题解的全局存在性.关于渐近传播速度的研究,由于所选取的参数以及核函数的不同,处理方法不兼容,因此本章分别给出相应的证明.首先,对于带有时空时滞的Food-Limited模型,借助核函数的显式结构得到解的一致有界性.接下来通过一系列比较原理证明了带有紧支集初值解的渐近传播速度.其次,对于带有固定时滞的Food-Limited模型,运用Harnack不等式得到带有紧支集初值解的渐近传播速度.最后,对于带有紧支集初值的非局部时滞Fisher-KPP模型解的渐近传播速度,可以采用反证法得到.此外,本章通过有限差分法给出数值模拟,不仅验证了理论结果,而且表明方程在时滞充分大时会产生类似时间周期解的正稳态.第五章考虑一类具有分布时滞的Nicholson方程的界面生成.当出生函数满足拟单调条件时,利用单稳问题的非标准双稳近似构造合适的下解,然后用单稳行波解构造合适的上解,最终得到解收敛到一个传播界面.在此基础上,进一步讨论不满足拟单调条件的情形,此时由于方程缺少单调性,上述方法不再适用.因此首先构造了两个辅助的拟单调系统,继而由“夹逼近方法”和柯西问题的比较原理得到原方程解的极限行为.结果表明,无论出生函数是否满足拟单调条件,行波解的最小波速和界面传播的速度在数值上是相等的,从而可以从一个新的视角去观察行波解的最小波速.

张娟[5](2021)在《奇异摄动及优化问题的误差估计与预处理》文中研究表明随着科学研究和工程技术领域探索的不断深入,自然界中的大量自然现象以及日常生活中的很多经济社会现象,往往可以借助(偏)微分方程进行刻画.由于科学工程问题受到诸多因素的影响,通常很难得到其真实解.科学计算是近两个世纪以来重要的科学技术进步之一,已成为促进重大科学发现和科技进步的重要手段,是国家科学技术创新发展的关键要素.科学计算必须依靠高效的数值计算方法和高性能的计算机硬件系统.但是,计算机硬件技术的更新速度在一定程度上跟不上科学工程领域发展的步伐,所以必须依靠研究、设计高效的数值方法进行大规模工程问题的数值模拟,并且这也是最有效、最节约成本的解决方案之一.如何确定恰当计算花销达到给定的数值计算精度,就需要使用自适应的技巧.自适应技巧的核心是利用已有的数值结果和模型方程的已知信息构造有效的后验误差估计指示子.如何得到有效的、便于程序实现的后验误差估计指示子,是当前诸多学者讨论和研究的焦点之一.此外,研究控制系统性能指标最优化的整数阶和分数阶偏微分方程最优控制模型,可以概括为在一组等式或不等式的约束条件下,求目标函数极值的问题.由于分数阶导数算子的全局特性,国内外诸多学者采用谱方法求解变量约束分数阶最优控制问题.本文基于有限元方法讨论了变量约束整数阶最优控制问题的数值求解方法及其离散代数系统快速计算的相关问题,结合其等价离散代数方程组的结构特征,构造了高效的块对角预处理子;利用谱方法给出了状态变量积分受限分数阶最优控制问题的离散格式,实现了模型问题的高效率数值求解.此外,采用谱方法实现了低维空间奇异摄动问题的高效数值求解,并根据基函数的正交特性讨论了该类模型问题的谱方法后验误差估计相关技巧.具体包含如下内容:文中围绕低维空间反应扩散方程奇异摄动问题模型,利用区间加权正交广义雅克比多项式设计了包含奇异摄动参数的正交基函数,从而得到了稀疏的刚度矩阵,并基于谱方法给出了一维奇异摄动问题模型相应的数值求解格式.基于模型方程微分算子建立了数值解的各系数与方程右端项关于雅克比多项式的展开系数之间的恒等关系.借助基函数以及广义雅克比多项式的加权正交性,通过分析基函数正交系数的上界估计,给出了两类范数意义下的后验误差估计.基于控制变量所满足的积分约束条件,给出了分布式最优控制问题的等价最优性条件,采用有限元方法给出了模型问题的数值离散代数系统.针对刚度矩阵中非零元素的结构特点构造了稳健的块预处理子,并设计了快速迭代算法,同时分析了该算法的计算量为≤ 9步.结合数值算例验证了本文所设计预处理子的高效特性,相应的迭代算法计算量符合理论分析结果.类似的,围绕状态变量在积分约束下的椭圆型最优控制问题,利用KKT条件给出了一阶等价最优性条件,采用有限元方法实现了相应等价问题的数值离散,同时根据其刚度矩阵的结构特征,设计了稳健的块预处理子以及可行的迭代算法,并证明了其迭代计算量为≤6步.同样地,给出数值算例验证了预处理子的高效特性,并且佐证了迭代算法的计算量与理论分析结果相一致.通过引入拉格朗日乘子技巧分析了状态变量在L2-范数意义约束下最优控制问题的一阶最优性条件,并得到了控制变量与对偶状态变量之间的等式对应关系.此外,针对Riemann-Liouville意义的分数阶偏微分方程,详细探究了状态变量在积分约束下Riesz分数阶最优控制问题模型相应的最优性条件.借助Galerkin谱方法具有全局性特点,结合广义雅克比多项式构造了 Galerkin谱方法实现分数阶最优控制问题模型的数值离散.同时根据已有的正则性分析结果给出了模型数值解的先验误差估计分析.最后借助数值算例验证了高精度Galerkin谱方法数值格式的逼近效果,通过数值解的收敛阶分析进一步验证了理论结果的正确性.

汤惠颖,张志娟,刘铖,刘绍奎[6](2021)在《两类基于局部标架梁单元的闭锁缓解方法》文中研究说明对于大转动、大变形柔性体的刚柔耦合动力学问题,基于李群SE(3)局部标架(local frame formulation,LFF)的建模方法能够规避刚体运动带来的几何非线性问题,离散数值模型中广义质量矩阵与切线刚度矩阵满足刚体变换的不变性,可明显地提高柔性多体系统动力学问题的计算效率.有限元方法中,闭锁问题是导致单元收敛性能低下的主要原因,例如梁单元的剪切以及泊松闭锁.多变量变分原理是缓解梁、板/壳单元闭锁的有效手段.该方法不仅离散位移场,同时离散应力场或应变场,可提高应力与应变的计算精度.本文基于上述局部标架,研究几类梁单元的闭锁处理方法,包括几何精确梁(geometrically exact beam formulation, GEBF)与绝对节点坐标(absolute nodal coordinate formulation, ANCF)梁单元.其中,采用Hu-Washizu三场变分原理缓解几何精确梁单元中的剪切闭锁,采用应变分解法缓解基于局部标架的ANCF全参数梁单元中的泊松闭锁.数值算例表明,局部标架的梁单元在描述高转速或大变形柔性多体系统时,可消除刚体运动带来的几何非线性,极大地减少系统质量矩阵和刚度矩阵的更新次数.缓解闭锁后的几类局部标架梁单元收敛性均得到了明显提升.

张惠[7](2021)在《碰撞振动系统参数-状态空间全局动力学研究》文中研究指明碰撞、冲击、间隙等非光滑因素在自然界和工程领域中广泛存在,碰撞振动系统的研究和控制已成为一个重要且富有挑战的课题。本文基于参数-状态空间对碰撞振动系统的分岔参数灵敏度、吸引子共存与吸引域质变机理、分岔与混沌控制等问题进行了系统的研究。应用不连续映射方法,对分段光滑碰撞振动系统擦边点邻域内向量场连续及不连续情况下的零时间不连续映射(ZTDM)和碰撞面法向截面上的不连续映射(NSDM)进行了推导,对分段光滑碰撞振动系统的余维二擦边分岔发生的条件进行了分析。针对依赖于多个常数参数的周期系统的稳定性问题,采用灵敏度分析,对刚性碰撞振动系统和分段光滑碰撞系统的分岔参数灵敏度进行了分析。根据分岔参数灵敏度分析得到参数-状态空间中不同原因诱导的共存吸引子的分布区域。对分段光滑碰撞振动系统周期倍化分岔的预测及控制进行了研究。主要内容分述如下:首先对非光滑微分系统的分类及数值分析方法,刚性碰撞振动系统和分段光滑碰撞振动系统擦边点处的不连续映射的建立及周期轨道的擦边分岔复合映射等内容进行了阐述,分析了刚性碰撞振动系统和分段光滑碰撞振动系统在时间Poincare截面和碰撞面法向Poincare截面上擦边点处不连续映射的范式映射。对一类单自由度分段光滑振动系统向量场连续及不连续情况下擦边点处的复合零时间不连续映射(ZTDM)和碰撞面法向截面上的不连续映射(NSDM)进行了推导,验证了使用低阶复合ZTDM和高阶复合NSDM研究擦边分岔的有效性。推导了擦边点处向量场不连续时分段光滑碰撞振动系统发生余维二擦边分岔的条件。其次,针对分段光滑碰撞振动系统,分别在零相位Poincare截面及碰撞面Poincare截面上利用胞映射法获得了系统中共存的稳定吸引子及其吸引域。研究了碰撞振动系统周期运动的鞍结分岔、周期倍化分岔及擦边分岔,以及诱导出现的吸引子共存,进一步研究了由边界激变、吸引域边界质变及内部激变等全局分岔所引起的吸引子湮灭机理。分析了碰撞振动系统中吸引域发生光滑—分形质变的原因,即由于系统由擦边分岔所诱导出现的平常型鞍点,及由周期倍化分岔所诱导的翻转型鞍点的稳定与不稳定流形发生横截相交,从而造成吸引域分形结构的出现。再次,对于依赖于多个常数参数的周期系统的稳定性问题,分析了当系统的Jacobian矩阵的特征值分别是简单特征值、半简特征值和非亏损特征值时对系统参数求偏导的方法,提出了计算非光滑动力系统分岔及状态参数灵敏度的方法,通过参数灵敏度分析了引起光滑和非光滑分岔的原因。对于刚性碰撞振动系统和分段光滑碰撞振动系统首先通过推导系统的Poincare映射从而建立系统的Floquet矩阵。然后分别将各个系统的Floquet矩阵对各个参数向量求偏导,通过扰动Floquet矩阵的特征值来实现识别对某种分岔形式最灵敏的参数,将对系统的动态特性有明显影响的参数从整个分岔参数和状态参数组中有效地识别出来,从而得到系统的主要分岔参数。将刚性碰撞振动系统和分段光滑碰撞振动系统参数空间进行离散,研究了这这两种系统中各种丰富的动力学运动的分布情况。两种系统的参数域在ω<1的低频区均普遍存在因擦边运动而诱导出现的q=i/1(i=2,3,…)次谐周期运动,计算得到次谐周期运动相邻两周期运动擦边点差值自然导数的商的极限值为1。刚性碰撞振动系统和分段光滑碰撞振动系统在(ω,ζ)参数平面内还存在着的“周期峰”、“环状”孤岛、“虾形”孤岛和“混沌眼”等丰富的动力学现象。通过分岔参数灵敏奇异性,分析得到参数-状态空间中不同原因诱导的共存吸引子的分布区域。得到由鞍结分岔诱导的吸引子共存区域通常出现在周期运动内部,由周期倍化分岔诱导的鞍结分岔所形成的吸引子共存区域(CA-GB)通常出现在周期倍化分岔线附近。最后针对一类单自由度含间隙和预紧弹簧的分段光滑碰撞振动系统的分岔控制问题,提出了一种基于Lyapunov指数及径向基函数神经网络的分岔预测及控制方法。首先建立了系统的Poincare映射,推导了分段光滑碰撞振动系统周期运动存在条件,研究了在主要分岔参数平面中的动力学分布;其次利用Lyapunov指数分析了系统的稳定性,提出利用追踪Lyapunov指数谱分岔点来预测周期倍化分岔发生的方法;最后基于径向基函数神经网络设计了参数反馈分岔控制器,并基于周期倍化分岔点处的最大Lyapunov指数构造适应度函数,及利用Lyapunov指数判断是否实现了分岔控制,以引导自适应混合引力搜索算法对控制器的参数进行优选,从而实现周期倍化分岔控制。

刘铖,胡海岩[8](2021)在《基于李群局部标架的多柔体系统动力学建模与计算》文中研究说明多柔体系统动力学主要研究由多个具有运动学约束、存在大范围相对运动的柔性部件构成的动力学系统的建模、计算和控制.多柔体系统不仅具有柔体大变形导致的几何非线性,更具有大范围刚体运动引起的几何非线性,其非线性程度远高于计算结构力学所研究的几何非线性问题.本文基于李群局部标架(local frame of Lie group, LFLG),讨论如何发展一套新的多柔体系统动力学建模和计算方法体系,具体内容包括:基于局部标架的梁、板壳单元,适用于长时间历程计算的多柔体系统碰撞动力学积分算法,结合区域分解技术的大规模多柔体系统动力学并行求解器,以及若干验证性算例.上述基于李群局部标架的方法体系可在计算中消除刚体运动带来的几何非线性问题,使柔体系统的广义惯性力、广义弹性力及其雅可比矩阵满足刚体运动的不变性,使多柔体系统动力学与大变形结构力学相互统一,有望推动新一代多柔体系统动力学建模和计算软件的发展.

张磊[9](2020)在《基于DFOS的库岸边坡变形机理及预测研究》文中提出边坡失稳形成滑坡。滑坡地质灾害在我国分布广泛,严重威胁着人们的生命财产安全。库岸边坡失稳形成的滑坡是指水库特别是大型水库建成后,受库水位波动影响,在重力作用下由库岸边坡变形孕育的具有一定规模的岩土体整体滑移的地质灾害现象。库岸边坡失稳破坏往往伴随各种次生灾害,其影响范围广,造成的危害大。边坡是一个由固、液、气组成的复杂开放体系,其变形和破坏具有多场演化特征,对多场信息的监测可为边坡的变形机理研究和破坏预警提供必要的信息。传统的边坡多场监测方法和技术仍存在许多不足,难以满足库岸边坡多场信息获取、分析和评价的要求。本文基于DFOS技术研发了适用于边坡多场多参量监测的相关光缆和传感器,建立了库岸边坡多场多参量监测系统。在室内模型试验的基础上,研究了降雨和库水位波动作用下边坡的变形响应规律;结合三峡库区马家沟滑坡,将DFOS技术应用到库岸边坡多场多参量监测中,实现了全分布式全局监测,确定了边坡变形模式与关键变形位置;而准分布式实时监测,精确获取了边坡关键位置多场变化实时信息。然后,结合DFOS监测数据,采用数据挖掘的方法对马家沟边坡诱发因素和变形机理进行了分析。最后,基于机器学习算法,提出了考虑边坡变形滞后效应的边坡位移预测模型,对马家沟边坡的变形进行了精确预测。论文开展的主要内容和研究成果如下:(1)详细介绍了几类分布式光纤感测技术的研究现状和应用进展;介绍了课题组研发的适用于库岸边坡多场监测的新型光纤传感器;设计并研发了基于FBG的固定式测斜仪,通过室内试验验证了其用于边坡变形监测的可行性。(2)分析并推导了光纤测斜管位移的误差计算公式,发现位移误差与监测距离的平方成正比,与测斜管直径成反比。结合监测数据特点,提出了基于机器学习的测斜管位移误差修正算法。(3)利用DFOS技术开展了降雨和库水位波动作用下边坡模型试验。通过对降雨作用下边坡含水量、孔隙水压力以及变形的监测,发现边坡是由于孔隙水压力的“骤增”引起土体强度的降低而失稳破坏的。此外,分布式应变传感光缆能有效识别边坡的变形范围,并且在边坡失稳破坏前5min,光缆监测到应变迅速增大的现象,这证明了分布式应变感测技术用于边坡监测及预警的可行性和优越性。通过在边坡内部水平向和竖直向布设FBG应变传感器,探究了在库水位波动作用下边坡内部的变形响应特征及破坏机理,发现当边坡内部水位快速上升以及库水位快速下降时,边坡安全系数迅速降低,边坡容易发生破坏。室内模型试验为野外监测的开展提供了理论指导和科学依据。(4)以三峡马家沟库岸边坡为例,将DFOS技术应用到库岸边坡多场多参量监测中,实现了全分布式全局监测,确定边坡变形模式与关键变形位置;准分布式实时监测,可精确获取了边坡关键位置位移场、温度场、渗流场、应力场等多场实时信息。(5)通过抗滑桩应变光缆监测数据,对抗滑桩的内力进行了反演并对抗滑桩的工作状态进行了评价;2015年3月之前,马家沟边坡整体变形较小,处于相对稳定状态,之后抗滑桩逐渐发挥抗滑作用。根据抗滑桩内力,计算出评价抗滑桩工作状态的特征值K,得出抗滑桩弯矩尚有一定的安全余度但剪力已接近设计值的重要结论。目前抗滑桩处于不稳定状态,需要加强监测和预警。(6)采用数据挖掘的方法,对多场监测数据进行了深入分析,发现马家沟滑坡位移速率表现出明显的分区现象。当库水位低于150m时,马家沟滑坡变形速率处于较高水平;当库水位介于150-160m之间且库水位波动速度<0.4m/d时,马家沟滑坡变形速率处于较高水平;而当库水位波动速度>0.4m/d时,马家沟滑坡变形趋于稳定;当库水位介于160m-175m之间时,马家沟滑坡变形处于相对稳定状态。马家沟滑坡的变形受库水位的控制,并且与库水位的涨落速度密切相关。(7)库水位和库水位变化速率通过改变渗流场来影响马家沟边坡稳定性状态。当库水位快速降低以及处于低水位时,由于边坡内外的水头差以及后缘水位变化滞后的效应,边坡前缘产生指向滑坡外部的渗流力,边坡变形加速;当库水位缓慢下降、快速回升以及处于高水位时,由于孔隙水压力的消散、边坡渗流力以及静水压力的作用,边坡处于相对稳定状态。(8)提出了一种考虑变形滞后效应的基于机器学习的马家沟边坡位移预测模型。首先,利用灰色关联分析方法确定库水位波动是边坡变形的主要影响因素。然后采用集对分析方法对周期项库水位和周期项位移的相关性进行了动态分析,确定了滑坡变形滞后时间。最后,基于滞后时间,选取最优影响因素,建立了基于粒子群优化算法的支持向量机模型(SPA-PSO-SVM)并对边坡位移进行了准确预测。

王振立[10](2020)在《几类偏微分方程的对称和动力学性质》文中认为本文运用对称性理论、动力系统分支理论研究了数学物理方程中若干非线性模型的相关问题,主要包含以下四个方面的相关内容:Lie对称理论、最优系统、分数阶微分方程和动力学理论。具体章节安排如下:第一章绪论部分,介绍了本文研究内容的理论背景和发展现状,这些理论包括对称理论、最优化理论、分数阶微分方程理论和动力系统分支理论,并阐明了本论文的主要的研究内容。第二章在对称理论的分析的基础上,利用经典的李群方法研究了(2+1)维Bogoy-avlenskii方程的李对称、李代数和群不变解;利用求得的对称将方程进行约化,得到方程的一些新的精确解。最后利用Ibragimov给出的伴随方程思想和Noether定理,利用伴随方程方法来构造Bogoyavlenskii方程的守恒律,通过计算我们可以发现该方法可用于计算任意微分方程的新的守恒律。第三章是在第二章研究的对称理论的前提下,在伴随意义下对子群进行分类,提出了优化系统;并且详细地解释了现有的构建最优系统的方法:Ovisiannikov理论、Olver理论和直接构造法理论。将三种理论通过KdV-like方程作为例子进行逐一的说明。通过对比我们发现利用直接构造法理论的优越性,最后利用此方法研究了 Harry Dym方程的一维优化系统及其相似约化。第四章在对称的理论下研究了时间分数阶弱耦合Kaup-Kupershmidt方程,首先推导了该方程的完整的李点对称,利用经典李对称分析,得到了该方程相应的向量场,并用向量场来约化方程。第五章将微分方程的定性理论与平面动力系统的分支理论相结合,采用动力学系统的方法,研究了 δ≤1的KdV和KdV-like方程的组合形式,在不同参数区域下的相图的所有分支。分别得到了光滑孤波,扭结(反扭结)波解和光滑周期波解以及非光滑行波解(例如peakon,cuspon和周期尖峰波),最后,研究了它们的精确显式解,并给出了数值模拟。第六章,对全文工作进行讨论和总结,并对下一步要进行的研究工作做了筹划。

二、某几类数值积分的计算(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、某几类数值积分的计算(论文提纲范文)

(1)分数阶非线性动力系统分形分析与控制(论文提纲范文)

摘要
ABSTRACT
主要缩写
主要符号
第一章 绪论
    1.1 研究背景
    1.2 国内外研究现状
        1.2.1 Julia集的分析与控制
        1.2.2 分数阶非线性模型
    1.3 预备知识
        1.3.1 Julia集与Mandelbrot集
        1.3.2 分数阶微积分
        1.3.3 离散分数阶微积分
    1.4 本文主要内容
第二章 分数阶Lotka-Volterra模型Julia集的分析与控制
    2.1 离散化与Julia集
    2.2 均衡点与稳定性
    2.3 系统Julia集的控制
        2.3.1 辅助参考反馈控制
        2.3.2 梯度控制
        2.3.3 最优函数控制
    2.4 系统Julia集的同步
    2.5 本章小结
第三章 噪声扰动分数阶Lotka-Volterra系统空间Julia集的动态分析
    3.1 分数阶复Lotka-Volterra系统的Julia集及其可视化
    3.2 噪声扰动分数阶Lotka-Volterra系统
    3.3 噪声扰动系统Julia集的结构变化
        3.3.1 Julia偏差指数
        3.3.2 Julia偏差图
    3.4 噪声扰动系统Julia集的对称性破缺
    3.5 本章小结
第四章 分数阶差分Logistic映射的动态分析与同步控制
    4.1 分数阶差分映射中的混沌与分形
        4.1.1 Poincaré图
        4.1.2 Julia集
    4.2 分数阶差分Logistic映射与分数阶差分二次映射的同步实现
    4.3 本章小结
第五章 分数阶二次映射的构造及其分形分析
    5.1 分数阶差分二次映射
    5.2 基于通用α-族的二次映射
    5.3 基于Grunwald-Letnikov分数阶微分的二次映射
    5.4 基于Riemann-Liouville分数阶积分的二次映射
    5.5 基于变阶数微积分的二次映射
    5.6 分形属性与记忆效应
    5.7 本章小结
第六章 分数阶函数迭代Julia集的自适应同步
    6.1 Mittag-Leffler函数、分数阶三角函数与分数阶双曲函数
    6.2 Julia集的分形动态分析
    6.3 Julia集的自适应同步
    6.4 例子
    6.5 本章小结
第七章 分数阶扩散限制凝聚的分形动态分析
    7.1 分数阶DLA模型
        7.1.1 扩散机制
        7.1.2 可视化分析
    7.2 定向性与维数分析
        7.2.1 各向异性指数
        7.2.2 分形维数
    7.3 本章小结
第八章 总结与展望
    8.1 工作总结
        8.1.1 主要贡献
        8.1.2 主要创新点
    8.2 研究展望
参考文献
致谢
攻读博士学位期间发表的学术论文
攻读博士学位期间参加的科研工作
攻读博士学位期间获得的奖励
学位论文评阅及答辩情况表

(2)复杂响应曲面的抽样与设计(论文提纲范文)

中文摘要
英文摘要
第一章 绪论和基本知识
    1.1 研究背景及意义
    1.2 探索复杂响应曲面的研究现状
        1.2.1 空间填充设计
        1.2.2 确定性抽样方法
        1.2.3 同时包含定性和定量因子的设计19
    1.3 本文的主要工作和结构安排
第二章 基于Kullback-Leibler散度的复杂响应曲面的抽样方法
    2.1 背景介绍
    2.2 基于核密度估计的Kullback-Leibler点
    2.3 序贯生成KL点的算法
    2.4 数值模拟
        2.4.1 空间填充性质
        2.4.2 数值积分
    2.5 本章小结
    2.6 理论证明
第三章 基于Kullback-Leibler散度抽样方法的推广研究
    3.1 背景介绍
    3.2 自适应的KL(AKL)点
        3.2.1 复杂密度函数的AKL点
        3.2.2 探索和优化昂贵的黑盒子函数
    3.3 基于最小邻近距离的Kullback-Leibler-nn点
        3.3.1 Kullback-Leibler-nn点的定义
        3.3.2 序贯地生成Kullback-Leibler-nn点的算法
        3.3.3 数值模拟
    3.4 本章小结
第四章 同时包含定量和定性因子的复杂响应曲面的试验设计
    4.1 背景介绍
    4.2 边际耦合设计的构造
    4.3 边际耦合设计的大样本性质
    4.4 数值模拟
    4.5 本章小结
    4.6 理论证明
第五章 总结与展望
    5.1 本文的主要工作
    5.2 未来的研究工作
参考文献
在学期间公开发表论文及着作情况
致谢
附录

(3)几类分数阶微分方程的快速数值算法研究(论文提纲范文)

摘要
abstract
缩略词表
第一章 绪论
    1.1 研究背景和意义
    1.2 分数阶导数的定义与性质
    1.3 分数阶方程的常见数值算法
    1.4 研究内容及创新点
    1.5 本文结构安排
第二章 时间分布阶和变系数空间分数阶扩散方程的快速隐式差分格式
    2.1 引言
    2.2 数值格式
        2.2.1 数值格式的推导
        2.2.2 稳定性、收敛性分析
    2.3 快速算法
    2.4 数值实验
    2.5 本章小结
第三章 时间分布阶和Riesz空间分数阶扩散波方程的快速二阶隐式差分格式
    3.1 引言
    3.2 数值格式
        3.2.1 数值格式的推导
        3.2.2 稳定性、收敛性分析
    3.3 快速算法
        3.3.1 一维情况
        3.3.2 二维情况
    3.4 数值实验
    3.5 本章小结
第四章 非线性Riesz空间分数阶反应-扩散方程的快速隐式积分因子法
    4.1 引言
    4.2 数值格式
        4.2.1 空间半离散
        4.2.2 隐式积分因子法
    4.3 快速算法
    4.4 数值实验
    4.5 本章小结
第五章 二维非线性Riesz空间分数阶反应-扩散方程的快速紧隐式积分因子法
    5.1 引言
    5.2 数值格式
        5.2.1 空间半离散
        5.2.2 快速紧隐式积分因子法
    5.3 线性稳定性分析
    5.4 数值实验
    5.5 本章小结
第六章 总结与展望
    6.1 工作总结
    6.2 工作展望
致谢
参考文献
攻读博士学位期间取得的成果

(4)几类非局部时滞种群扩散模型的空间动力学(论文提纲范文)

中文摘要
Abstract
第一章 绪论
    1.1 研究背景
    1.2 本文研究的主要问题及进展
    1.3 本文的主要工作和结构安排
第二章 一类非局部Fisher-KPP方程的行波解的稳定性
    2.1 引言
    2.2 行波解的稳定性
    2.3 命题2.2的证明
第三章 一类格微分方程行波解的全局稳定性
    3.1 引言
    3.2 主要结论
    3.3 全局稳定性
第四章 一类非局部时滞单种群模型的渐近传播速度
    4.1 引言
    4.2 具有时空时滞的Food-Limited模型的渐近传播速度
        4.2.1 主要定理证明
    4.3 具有固定时滞的Food-Limited模型的渐近传播速度
        4.3.1 主要定理证明
        4.3.2 数值模拟
    4.4 具有非局部时滞的Fisher-KPP模型的渐近传播速度
        4.4.1 主要定理证明
        4.4.2 数值模拟
第五章 一类具有分布时滞的Nicholson方程的界面生成
    5.1 引言
    5.2 单调情形
        5.2.1 预备知识
        5.2.2 界面的生成
        5.2.3 界面的传播
    5.3 非单调情形
        5.3.1 证明
研究展望
参考文献
在学期间的研究成果
致谢

(5)奇异摄动及优化问题的误差估计与预处理(论文提纲范文)

中文摘要
英文摘要
第一章 绪论
    §1.1 研究背景和现状
    §1.2 研究意义
    §1.3 本文的结构及创新点
第二章 预备知识
    §2.1 Legendre多项式
    §2.2 Jacobi多项式
    §2.3 最优控制问题模型
    §2.4 谱方法分类及其特征
        §2.4.1 Galerkin谱方法
        §2.4.2 Tau方法
        §2.4.3 配置方法
第三章 奇异摄动问题的后验误差估计
    §3.1 奇异摄动问题模型
    §3.2 L~2-加权范数意义下的后验误差估计
    §3.3 H~1-范数意义下的后验误差估计
    §3.4 数值算例
第四章 控制变量受限约束最优控制问题的块预处理子设计
    §4.1 控制受限最优控制问题模型
    §4.2 块预处理子及其稳健性(robust)分析
    §4.3 高效迭代算法设计
    §4.4 数值算例
第五章 状态变量受限约束最优控制问题的块预处理子与最优性条件
    §5.1 状态变量积分受限模型及其预处理子构造
        §5.1.1 状态变量积分受限模型的最优性条件
        §5.1.2 块预处理子及其稳健性(robust)分析
        §5.1.3 高效迭代算法设计
        §5.1.4 数值算例
    §5.2 状态变量L~2范数受限模型的最优性条件
第六章 状态变量积分受限分数阶最优控制问题的谱方法研究
    §6.1 分数阶最优控制问题模型
    §6.2 先验误差估计分析
    §6.3 数值算例
第七章 研究展望
参考文献
致谢
读博期间发表和完成的论文

(7)碰撞振动系统参数-状态空间全局动力学研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 课题来源和研究的应用背景
    1.2 国内外研究现状
        1.2.1 非光滑动力系统研究现状
        1.2.2 碰撞振动系统参数空间研究现状
        1.2.3 碰撞振动系统状态空间研究现状
        1.2.4 非线性系统分岔控制研究现状
    1.3 存在的主要问题
    1.4 主要研究内容
2 非光滑动力系统理论基础
    2.1 非光滑动力系统的分类
    2.2 非光滑动力系统理论及数值分析方法
        2.2.1 周期轨道和Poincaré映射
        2.2.2 擦边点处的不连续映射
    2.3 小结
3 分段光滑碰撞振动系统擦边运动及不连续映射
    3.1 分段光滑碰撞系统周期运动及“擦边”运动存在条件
        3.1.1 方程的解及周期运动存在条件
        3.1.2 擦边周期n运动存在条件
    3.2 分段光滑碰撞振动系统擦边点处的不连续映射
        3.2.1 向量场不连续及连续时系统的零时间不连续映射
        3.2.2 向量场不连续及连续时系统的碰撞面法向截面不连续映射
    3.3 分段光滑碰撞振动系统余维二擦边分岔研究
    3.4 小结
4 碰撞振动系统状态空间动力学研究
    4.1 吸引子及吸引域
        4.1.1 吸引子及吸引域的定义
        4.1.2 吸引域类型举例
    4.2 改进的Poincaré型胞映射方法
    4.3 分段光滑碰撞系统状态空间动力学分析
        4.3.1 分段光滑碰撞振动系统多吸引子共存及湮灭机理研究
        4.3.2 随参数ω变化时吸引域结构质变机理
        4.3.3 随参数ω变化时吸引域变化规律研究
    4.4 小结
5 碰撞振动系统分岔参数灵敏度分析方法研究
    5.1 碰撞振动系统分岔参数灵敏度分析
        5.1.1 简单特征值情况
        5.1.2 半简特征值情况
        5.1.3 非亏损特征值情况
    5.2 单自由度刚性碰撞振动系统参数灵敏度分析
        5.2.1 系统模型及Poincaré映射
        5.2.2 刚性碰撞振动系统参数灵敏度分析
    5.3 单自由度分段光滑碰撞系统参数灵敏度分析
        5.3.1 系统Poincaré映射
        5.3.2 分段光滑碰撞振动系统参数灵敏度分析
    5.4 刚性碰撞振动系统和分段光滑碰撞系统参数空间动力学分析
        5.4.1 刚性碰撞振动系统数空间动力学分析
        5.4.2 分段光滑碰撞振动系统参数空间动力学分析
    5.5 分段光滑碰撞系统吸引子共存区域参数灵敏度分析
    5.6 小结
6 分段光滑碰撞振动系统周期倍化分岔预测及控制
    6.1 分段光滑碰撞振动系统周期倍化分岔分析及预测
    6.2 分段光滑碰撞振动系统周期倍化分岔控制
        6.2.1 基于RBF神经网络的非光滑系统分岔控制器设计及优化
        6.2.2 适应度函数的建立
        6.2.3 仿真研究
    6.3 结论
结论
致谢
参考文献
攻读学位期间的研究成果

(8)基于李群局部标架的多柔体系统动力学建模与计算(论文提纲范文)

引言
1 基于SE(3)群局部标架的几类梁单元
    1.1 几何精确Timoshenko梁单元
    1.2 无转动参数的梁单元
2 基于SE(3)群局部标架的几类板壳单元
    2.1 三维几何精确Reissner-Mindlin板壳单元
    2.2 几类无转动参数的板壳单元
3 基于局部标架的多柔体系统动力学核心算法
4 数值算例
    4.1 多柔体系统保能量(角)动量算法
    4.2 广义a方法后验误差估计方法
    4.3 局部标架壳单元静力学分析
    4.4 多柔体系统碰撞动力学仿真
    4.5 大型桁架结构展开动力学模拟
    4.6 基于区域分解的多柔体系统动力学通用并行算法
5 结束语

(9)基于DFOS的库岸边坡变形机理及预测研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 立题依据和研究背景
    1.2 研究现状与存在问题
        1.2.1 库岸边坡变形演化机理研究
        1.2.2 库岸边坡多场特征及其耦合研究
        1.2.3 边坡监测方法研究
        1.2.4 边坡位移预测研究
        1.2.5 存在的问题
    1.3 论文的研究内容与结构
        1.3.1 研究内容
        1.3.2 技术路线
        1.3.3 论文结构
第二章 库岸边坡DFOS多场监测技术研究
    2.1 概述
    2.2 DFOS技术原理
    2.3 库岸边坡多场全分布式光缆监测技术
        2.3.1 基于BOTDR的变形监测
        2.3.2 基于ROTDR的温度监测
    2.4 库岸边坡多场准分布式光缆监测技术
        2.4.1 基于FBG的温度监测
        2.4.2 基于FBG的渗流场监测
        2.4.3 基于FBG的应力场监测
        2.4.4 基于FBG的固定式测斜仪研发
    2.5 本章小结
第三章 渗流场作用下的库岸边坡变形响应试验研究
    3.1 概述
    3.2 降雨作用下的边坡模型试验研究
        3.2.1 试验设计
        3.2.2 试验过程
        3.2.3 试验结果
        3.2.4 边坡模型变形响应剖析
    3.3 库水位波动作用下的边坡模型试验研究
        3.3.1 试验设计
        3.3.2 试验过程
        3.3.3 试验结果
        3.3.4 边坡模型变形响应剖析
    3.4 本章小结
第四章 三峡马家沟边坡DFOS多场监测系统的建立
    4.1 地理环境特征
        4.1.1 自然地理位置
        4.1.2 地形地貌
        4.1.3 气象水文
    4.2 工程地质特征
        4.2.1 地层岩性
        4.2.2 地质构造
        4.2.3 水文地质条件
        4.2.4 岩土体物理力学参数
    4.3 全分布式光纤监测方案设计
        4.3.1 全分布式监测系统及其基本功能
        4.3.2 光纤测斜管变形监测
        4.3.3 抗滑桩监测
        4.3.4 坡表变形及温度监测
    4.4 准分布式实时监测方案设计
        4.4.1 准分布式监测系统及其基本功能
        4.4.2 数据实时监测单元
        4.4.3 远程处理单元
        4.4.4 决策单元
    4.5 本章小结
第五章 三峡马家沟边坡诱发因素及变形机理研究
    5.1 概述
    5.2 马家沟滑坡多场多参量监测结果
        5.2.1 温度场
        5.2.2 渗流场
        5.2.3 变形场
        5.2.4 应力场
    5.3 马家沟滑坡诱发因素分析
    5.4 马家沟滑坡变形机理分析
    5.5 本章小结
第六章 基于机器学习的边坡变形预测
    6.1 边坡位移预测方法原理
        6.1.1 时间序列加法模型
        6.1.2 灰色关联分析
        6.1.3 集对分析
        6.1.4 支持向量机
        6.1.5 粒子群算法
    6.2 滑坡位移预测模型建立
    6.3 马家沟滑坡位移预测
        6.3.1 滑坡位移变形的滞后性
        6.3.2 趋势项位移预测
        6.3.3 周期项位移预测
        6.3.4 累计位移预测
    6.4 滑坡位移预测在早期预警中的重要意义
    6.5 本章小结
第七章 全文总结与展望
    7.1 全文总结
    7.2 创新点
    7.3 研究展望
参考文献
读博士期间主要成果
致谢

(10)几类偏微分方程的对称和动力学性质(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 非线性微分方程的研究概况
    1.2 李对称理论
        1.2.1 经典Lie对称
        1.2.2 守恒律
        1.2.3 最优化理论
    1.3 分数阶微分方程理论
    1.4 动力系统分支理论基础
    1.5 选题及主要工作
2 (2+1)维Bogoyavlenskii方程Lie对称分析和守恒律
    2.1 引言
    2.2 Lie对称的应用
        2.2.1 (2+1)维Bogoyavlenskii方程Lie对称分析
        2.2.2 (2+1)维Bogoyavlenskii方程的对称约化和精确解
    2.3 (2+1)维Bogoyavlenskii方程的守恒律
        2.3.1 守恒律预备知识
        2.3.2 Bogoyavlenskii方程的守恒律
    2.4 本章小结
3 两类方程的最优系统研究
    3.1 最优系统构建理论
        3.1.1 Ovisiannikov理论
        3.1.2 Olver理论
        3.1.3 直接构造法理论
    3.2 优化系统理论的运用举例
        3.2.1 KdV-like方程的优化系统
        3.2.2 KdV-like方程不变解及相似约化
    3.3 Harry Dym方程的一维优化系统及相似约化
        3.3.1 Harry Dym方程的一维优化系统
        3.3.2 Harry Dym方程的不变解及相似约化
    3.4 本章小结
4 时间分数阶弱耦合Kaup-Kupershmidt方程的对称研究
    4.1 引言
    4.2 分数阶微分算子的定义和性质
    4.3 分数阶微分方程的李对称分析
    4.4 时间分数阶弱耦合Kaup-Kupershmidt方程的Lie对称分析
    4.5 时间分数阶弱耦合KK方程的精确显式解
    4.6 本章小结
5 KdV-like方程动力学理论研究
    5.1 引言
    5.2 奇异行波系统
    5.3 方程(5.5)的分支和相图
    5.4 方程(5.5)的精确行波解
        5.4.1 方程(5.5)的分支和相图
        5.4.2 δ=1/2时方程(5.5)的精确行波解
        5.4.3 δ=0时方程(5.5)的精确行波解
        5.4.4 δ=-1/3时方程(5.5)的精确行波解
        5.4.5 δ=-1时方程(5.5)的精确行波解
        5.4.6 δ=-2时方程(5.5)的行波解的存在性和显式精确解
    5.5 本章小结
6 总结与展望
    6.1 论文的主要结论
    6.2 工作展望
致谢
参考文献
攻读博士学位期间撰写的论文和研究成果

四、某几类数值积分的计算(论文参考文献)

  • [1]分数阶非线性动力系统分形分析与控制[D]. 王玉品. 山东大学, 2021(10)
  • [2]复杂响应曲面的抽样与设计[D]. 王素敏. 东北师范大学, 2021(09)
  • [3]几类分数阶微分方程的快速数值算法研究[D]. 蹇焕燕. 电子科技大学, 2021(01)
  • [4]几类非局部时滞种群扩散模型的空间动力学[D]. 田歌. 兰州大学, 2021(09)
  • [5]奇异摄动及优化问题的误差估计与预处理[D]. 张娟. 山东师范大学, 2021(12)
  • [6]两类基于局部标架梁单元的闭锁缓解方法[J]. 汤惠颖,张志娟,刘铖,刘绍奎. 力学学报, 2021(02)
  • [7]碰撞振动系统参数-状态空间全局动力学研究[D]. 张惠. 兰州交通大学, 2021
  • [8]基于李群局部标架的多柔体系统动力学建模与计算[J]. 刘铖,胡海岩. 力学学报, 2021(01)
  • [9]基于DFOS的库岸边坡变形机理及预测研究[D]. 张磊. 南京大学, 2020(12)
  • [10]几类偏微分方程的对称和动力学性质[D]. 王振立. 南京理工大学, 2020(01)

标签:;  ;  ;  ;  ;  

某些数值积分的计算
下载Doc文档

猜你喜欢